代號:33570 33670

107年特種考試地方政府公務人員考試試題

頁次:4-1

等 别:三等考試

類 科:電力工程、電子工程

科 目:工程數學

考試時間:2小時 座號:

※注意:禁止使用電子計算器。

甲、申論題部分: (50分)

- (一)不必抄題,作答時請將試題題號及答案依照順序寫在申論試卷上,於本試題上作答者,不予計分。
- (二)請以藍、黑色鋼筆或原子筆在申論試卷上作答。
- (三)本科目除專門名詞或數理公式外,應使用本國文字作答。

$$- \cdot 若 A = \begin{bmatrix} a & 0 & 0 \\ b & \cos\theta & \sin\theta \\ c & -\sin\theta & \cos\theta \end{bmatrix}$$
 為正交矩陣,求:

- (→) a, b, c 之值為何? (10 分)
- (二)A的特徵值之和為何?(5分)
- 二、解微分方程ty'' + (t-1)y' + y = 0,其中 $y' = \frac{dy}{dt}$ 及 $y'' = \frac{d^2y}{dt^2}$;求满足下列條件之解y(0) = 0及 $y(1) = 2 \circ (15 分)$
- 三、請求出週期函數 $f(x) = x^2$,其中 $-\pi < x < \pi$, $f(x + 2\pi) = f(x)$,之傅立葉級數,再利用此級數求 $\sum_{n=1}^{\infty} \frac{1}{n^4}$ 之值。(10 分)
- 四、自一副正常52張撲克牌中取出5張牌,試求下列事件之機率:
 - (→)所有取出之牌皆為同花色(suit)。(5分)
 - □取出 2 張或更多之 Aces。(5 分)
- 乙、測驗題部分: (50分)

代號:7335

- (一)本測驗試題為單一選擇題,請選出一個正確或最適當的答案,複選作答者,該題不予計分。
- 二共20題,每題2.5分,須用<u>2B鉛筆</u>在試卡上依題號清楚劃記,於本試題或申論試卷上作答者,不予計分。
- 1 下列那一組值會使矩陣 $M = \begin{bmatrix} 0 & 1 & 2 \\ a & 0 & 3 \\ b & c & 0 \end{bmatrix}$ 為 "歪斜對稱" (skew-symmetric)矩陣?

$$(A)a = 1, b = 2, c = 3$$
 $(B)a = 1, b = -2, c = -3$ $(C)a = -1, b = -2, c = -3$ $(D)a = -1, b = 2, c = -3$

$$(A)x^{2}y^{3} + 3xy + 3x^{2} = k$$

$$(B)x^{2}y^{3} - 3xy + 3y^{2} = k$$

$$(C)x^{2}y^{3} - 3xy - 3y^{2} = k$$

$$(D)x^{2}y^{3} + 3xy - 3x^{2} = k$$

代號:33570 33670 百次:4-2

3 求矩陣
$$A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & -5 & 1 \\ 1 & -4 & -7 \end{bmatrix}$$
的秩(rank)為何?

(A)1

(B)2

(C)3

- (D)0
- 4 令收斂區間為0<|z|<1,試求複變數函數 $f(z)=\frac{e^z}{z(z^2+1)}$ 以勞倫茲級數 (Laurent series)表示時,

其留數 (residue) 應為下列何值?

(A)0

(B) $\frac{1}{2}$

(C) 1

- (D) $\frac{1}{6}$
- - column matrix), $R = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$ 為 -2×2 上三角矩陣(upper triangular matrix),且 $a \cdot b \cdot c$ 均大於

等於零,則下列敘述何者正確?

- (A)a+b+c=5
- (B) abc = 5
- (C)a-b-c = 4
- (D)ab+bc+ca=4
- 6 已知線性轉換 $T: \Re^4 \to \Re^4$,且定義為 $T(\mathbf{x}) = \mathbf{A}\mathbf{x}, \mathbf{A} = \begin{bmatrix} 2 & 1 & 6 & 0 \\ 1 & 1 & 3 & -1 \\ 1 & 2 & 3 & -3 \\ -3 & 2 & -9 & -7 \end{bmatrix}$ 。下列何者為 $\ker(T)$ 的基

底(basis)?

(A) $\{(-3, 0, 1, 0), (-1, 2, 0, 1)\}$

- (B) $\{(-3, 0, 1, 0), (-4, 2, 1, 1), (0, 1, 3, 1)\}$
- (C) {(2, 4, 1, 0), (-4, 2, 1, 1), (0, 1, 3, 1)}
- $(D)\{(2, 4, 1, 0), (0, 1, 3, 1)\}$
- 7 求複變函數積分 $\oint_C \frac{z+1}{z^3-2z^2} dz$ 之值,其中積分路徑 C 為複數平面上逆時鐘方向繞圓周|z-1|=2,

以及 $i = \sqrt{-1}$ 。

- (A) $\frac{3\pi i}{2}$
- $(B) \frac{3\pi i}{2}$
- (C) $3\pi i$

(D)0

- 8 下列何組向量可以是 R³ 的一個基底?
 - (A) {[1 2 3], [4 5 6], [7 8 9]}

- (B) {[1 4 5], [2 7 3]}
- (C) {[1 2 3], [4 5 6], [7 8 9], [2 1 1]}
- (D) {[1 2 5], [4 1 6], [2 1 1]}

代號	: 33570 33670	
	33670	
百次	: 4-3	

假設矩陣 A 為 3×3 的方陣,且其特徵值(eigenvalues) $\lambda_1=1$, $\lambda_2=-1$, $\lambda_3=-1$, 求 $A^{50}=?$ 選 項中 I 為 3×3 單位方陣。

(A)A

(B)- A

(C)I

(D)-I

假設 z = 3+2i,求 $I_m(\frac{\overline{z}}{z}) = ?$

- (A) $\frac{12}{13}$
- (B) $-\frac{12}{13}$
- (C) $-\frac{11}{13}$
- (D) $-\frac{12}{15}$

求微分方程式 $xy'+y=\sin x$ 的解。(選項中C為任意常數) 11

- (A) $y = \frac{(-\cos x + c)}{x}$ (B) $y = \frac{(-\tan x + c)}{x}$ (C) $y = -\cos x + c\sin x$ (D) $y = \frac{(-\cos x + c\sin x)}{x}$

下列何者是互為線性相依(linear dependent)?

- (A) $y_1 = \cos wx$, $y_2 = \sin wx$, $y_3 = e^x$
- (B) $y_1 = e^x$, $y_2 = e^{2x}$, $y_3 = xe^x$
- (C) $y_1 = e^{3x}$, $y_2 = e^{6x}$, $y_3 = e^{9x}$
- (D) $y_1 = x$, $y_2 = 3x$, $y_3 = x^2$

設 y = a(t) 為 y''(t) + y'(t) + y(t) = 2 之解,則 $\lim_{t \to \infty} a(t)$ 之值為何?

(A)0

(B)2

(C)4

 $(D)\infty$

以 Frobenius 級數 $y = \sum_{n=0}^{\infty} C_n X^{n+r}$ 求解 $x^2 y'' + x(\frac{1}{2} + 2x)y' + (x - \frac{1}{2})y = 0$,則其所得到的指示方程式

(Indicial equation) 為何?

- (A) $r^2 \frac{1}{2}r \frac{1}{2} = 0$ (B) $r^2 + \frac{1}{2}r \frac{1}{2} = 0$ (C) $r^2 + \frac{1}{2}r 1 = 0$

15 已知 $f(t) = \begin{cases} \cos 2t, & 0 \le t < 2\pi \\ 0, & t \ge 2\pi \end{cases}$ 的拉普拉斯(Laplace)轉換為 $F(s) = \frac{s(1 - e^{-2\pi s})}{s^2 + 4}$,當給定一微分方程

為x''(t) + 4x(t) = f(t), x(0) = x'(0) = 0,下列何者正確?

 $(A) x(t) = \frac{1}{2} t \sin 2t \quad \text{if } t < 2\pi$

(B) $x(t) = \frac{1}{2}\sin 2t$ if $t \ge 2\pi$

(C) $x(\frac{\pi}{4}) = \frac{\pi}{8}$

(D) $x(\frac{9}{4}\pi) = \frac{1}{2}\pi$

- 白努利方程式(Bernoulli equation) $y' + p(x)y + q(x)y^a = 0$ 可以何方式轉換為線性方程式? 16
 - (A)以變數變換 $w = y^{-a}$ 轉換
 - (B)以變數變換 $u = y^{1-a}$ 轉換
 - (C)以變數變換 $v = v^{a+1}$ 轉換
 - (D)要先知道一特解 S(X)後,以變數變換 $z = S(x) + \frac{1}{y}$ 轉換
- 下列何者為函數 $f(x) = \begin{cases} 0, & -\pi < x < 0 \\ \pi, & 0 \le x < \pi \end{cases}$ 之傅立葉級數(Fourier series)?

(A)
$$\pi + \sum_{n=1}^{\infty} \left(\frac{(-1)^n - 1}{n} \cos nx \right)$$

(B)
$$\frac{\pi}{2} + \sum_{n=1}^{\infty} \left(\frac{1 - (-1)^n}{n} \cos nx \right)$$

$$(C) \pi + \sum_{n=1}^{\infty} \left(\frac{(-1)^n - 1}{n} \sin nx \right)$$

$$(D)\frac{\pi}{2} + \sum_{n=1}^{\infty} \left(\frac{1 - (-1)^n}{n} \sin nx \right)$$

給定一個連續隨機變數 X, 其累積分布函數(cumulative distribution function) 18

$$F(x) = \begin{cases} 0 & \text{if } x < 0 \\ \frac{x^2}{7} & \text{if } 0 \le x < 1 \\ \frac{2x}{7} - \frac{1}{7} & \text{if } 1 \le x < 3 , \text{ } | \text{ } |$$

離散隨機變數 X 與 Y 之結合機率質量函數(joint probability mass function)為: 19

 $p_{X,Y}(x,y) = \begin{cases} c \cdot xy^2, & \text{if } x = 1,2, \ y = 1,2,3 \\ 0, & \text{otherwise} \end{cases}$, 試問下列何者正確?

(A)
$$E[X] = \frac{4}{3}$$

(B)
$$E[X] = \frac{5}{3}$$

(A)
$$E[X] = \frac{4}{3}$$
 (B) $E[X] = \frac{5}{3}$ (C) $E[X] = \frac{10}{7}$

(D)
$$E[X] = \frac{12}{7}$$

投擲一個公正的骰子一次,規定出現點數 1, 2, 3, 4 為成功 (X=1),出現其餘點數則為失敗 20 (X=0) ,求隨機變數 X 之變異數 Var(X) 為何?

$$(A) \frac{1}{3}$$

(B)
$$\frac{2}{3}$$

(C)
$$\frac{2}{9}$$

(D)
$$\frac{4}{9}$$

測驗式試題標準答案

考試名稱:107年特種考試地方政府公務人員考試

類科名稱:電子工程、電力工程

工程數學(試題代號:7335) 科目名稱:

單選題數:20題 單選每題配分:2.50分

複選每題配分: 複選題數:

標準答案:

題號	第1題	第2題	第3題	第4題	第5題	第6題	第7題	第8題	第9題	第10題
答案	С	С	В	С	С	A	D	D	С	В
題號	第11題	第12題	第13題	第14題	第15題	第16題	第17題	第18題	第19題	第20題
答案	A	D	В	A	D	В	D	В	В	С
題號	第21題	第22題	第23題	第24題	第25題	第26題	第27題	第28題	第29題	第30題
答案										
題號	第31題	第32題	第33題	第34題	第35題	第36題	第37題	第38題	第39題	第40題
答案										
題號	第41題	第42題	第43題	第44題	第45題	第46題	第47題	第48題	第49題	第50題
答案										
題號	第51題	第52題	第53題	第54題	第55題	第56題	第57題	第58題	第59題	第60題
答案										
題號	第61題	第62題	第63題	第64題	第65題	第66題	第67題	第68題	第69題	第70題
答案										
題號	第71題	第72題	第73題	第74題	第75題	第76題	第77題	第78題	第79題	第80題
答案										
題號	第81題	第82題	第83題	第84題	第85題	第86題	第87題	第88題	第89題	第90題
答案										
題號	第91題	第92題	第93題	第94題	第95題	第96題	第97題	第98題	第99題	第100題
答案										

備 註: